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Abstract: Background: This systematic review aims to evaluate the efficacy of the available platelet-
rich plasma (PRP) products and composition to regenerate alveolar bone after tooth extraction.
Methods: PubMed, Cochrane Central Register of Controlled Trials, and EBSCO databases were
searched up to 2 July 2021. Only randomized clinical trials using leukocyte-rich plasma (L-PRP) or
pure-platelet rich plasma (P-PRP) for bone regeneration in alveolar ridge preservation were selected.
The following outcomes were considered: (1) new bone formation (primary outcome) and (2) bone
density (secondary outcome). A meta-analysis for PRP, P-PRP, and L-PRP using a fixed effect model
was performed with Review Manager 5.4 software. Overall evidence was qualified using GRADE.
Results: Six randomized clinical trials from 2639 unique articles initially identified met the inclusion
criteria. The meta-analysis showed a significant effect of the P-PRP on the outcome of new bone
formation (SMD, 1.44; 95% CI, 0.84 to 2.03) for P-PRP treatment. No information was retrieved for
L-PRP. A statistically significant difference was also observed in the P-PRP group for bone density
outcome (SMD, 1.24; 95% CI, 0.81 to 1.68). The L-PRP treated sockets also showed higher bone
density (SMD, 0.88; 95% CI, 0.31 to 1.45) in comparison to control sockets. The quality of evidence
was moderate for both outcomes in the P-PRP group and low for the L-PRP group. Conclusions:
Despite the limitations of the included studies, our data suggest that P-PRP, in comparison to
unassisted healing, can improve alveolar bone regenerative potential. However, more high-quality
clinical studies are needed.

Keywords: alveolar ridge preservation; platelet-rich plasma; platelet rich in growth factors; alveolar
bone regeneration

1. Introduction

Healthy tissue preservation and highly predictable techniques are one the main ob-
jectives of the oral implantology. Tooth removal is indicated when it cannot be restored
or maintained in acceptable conditions for long-term health, functions, or esthetics. Sig-
nificant alveolar bone remodeling has been reported after tooth removal [1–4]. Alveolar
socket atrophy may affect tooth replacement therapy, especially when implant-supported
restorations are planned. A deficient blood supply and a higher osteoclastic activity may
play a pivotal role in this process [5].

Various materials have been used to prevent alveolar bone loss after tooth extraction [6,7].
Generally, these consist of bone graft materials that can be derived from xenogenic [8–10],
allogenic [11,12], or synthetic materials [13]. Bone derivative materials serve as a scaffold
for new bone growth and dimensional stability of the wound [14]. Although good clinical
outcomes in terms of bone healing and alveolar socket dimensions have been reported in
some clinical trials [6,7], their ability to regenerate hard tissues is still under debate due to
a lack of osteoinductive and osteogenic properties [15,16].

Since its discovery, biological agents have emerged as a promising alternative to
promote de novo bone formation [17]. Of the available biomaterials, platelet-rich plasma
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(PRP) has become increasingly popular since its first introduction in the 1990s [18,19].
PRP is characterized by a concentrated autologous solution of platelets obtained using
blood gradient density centrifugation. A blood clot is formed after platelet activation,
and growth factors and cytokines are released. PRP is used in many medical areas to
promote tissue regeneration, including traumatology, dermatology, or oral and maxillofacial
surgery. However, the effectiveness of PRP in regenerating alveolar bone tissue remains
controversial, mainly due to the different available protocols. The presence or absence of
leukocytes is believed to be a key differentiator and has been used to classify PRPs in two
main groups: leukocyte-poor PRP (P-PRP) and leukocyte-rich PRP (L-PRP).

Plasma rich in growth factors (PRGF) is a P-PRP that was first described by Anitua [20].
Unlike L-PRP, PRGF is characterized by a relatively modest increase in platelet concen-
tration (≈2–3-fold higher than peripheral blood concentration) and by the absence of
leukocytes [21,22]. Several randomized clinical trials [22] (RCTs) have found better soft
tissue healing and lower discomfort in PRGF-treated sockets [18,23–27]. It is believed that
the growth factors released after platelet activation may also promote osteogenic induction
and bone regeneration in the alveolar socket. In this sense, compared to unassisted healing
sockets (natural healing or blood clot), a beneficial effect on bone density [18] and a higher
new bone formation [27] have been described in the PRGF-treated sockets. By contrast,
non-randomized prospective study described no benefit in terms of bone density after
4–8 weeks of follow-up [28].

On the other hand, other findings in RCTs suggest a reduced pain and a higher soft-
tissue healing [29] and bone density [30] in the sockets treated with L-PRP. However,
several studies have described contradictory results, and the beneficial effect on bone
regeneration [29,31] or soft tissue healing [31] could not be confirmed.

Other systematic reviews have assessed platelet concentrates in the context of alveolar
bone regeneration [32–34]. However, none of them directly compared P-PRP to L-PRP
in the context of alveolar bone regeneration, or the information did not contain recently
published trials. Thus, this systematic review and meta-analysis investigated the effects of
platelet-rich plasma in bone regeneration on alveolar ridge preservation.

2. Materials and Methods
2.1. Protocol Registration and Reporting Format

The present systematic review was designed following the guidelines of the 2020 Pre-
ferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement [35].
The protocol was registered and allocated in the PROSPERO database (CRD42021269495),
hosted by the National Institute for Health Research, University of York, Center for Reviews
and Dissemination. All amendments performed during the review process were registered
indicating the date and the reason for the change.

2.2. Focus Question

The aim of this review was to address the following question:
Which platelet-rich plasma shows the best performance for alveolar bone regeneration

following tooth extraction?

2.3. PICO Strategy

The following Population, Intervention, Comparison and Outcomes framework was used:

- (P) Population: we included patients without a severe underlying disease requiring
tooth extraction.

- (I) Interventions: we considered all interventions employing PRP alone for socket filling.
- (C) Comparison: natural healing or blood clot
- (O) Outcome: our primary outcome was new bone formation, whereas we considered

bone density as a secondary outcome.
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2.4. Eligibility Criteria

Included studies were RCTs that met the following criteria: participants requiring
tooth extractions, interventions of P-PRP or L-PRP in the alveolar socket, the comparator
was unassisted socket healing, and outcomes were new bone formation measured by
histomorphometric analysis and bone density. The outcome measurement was limited
to 3 months, and there was no limit on the number of patients treated. We excluded
observational studies and trials with inadequate information or data.

2.5. Data Sources and Search Strategy

A comprehensive electronic search was performed from inception to 2 July 2021
using the following internet databases: MEDLINE/Pubmed, Cochrane Central Register of
Controlled Trials, and EBSCO. Using controlled vocabulary supplemented with keywords,
we searched for RCTs using PRP for alveolar ridge preservation. The search strategy used
the following terms: (alveolar ridge preservation OR tooth extraction OR socket) AND
(platelet rich plasma OR platelet-rich plasma OR platelet rich fibrin OR platelet concentrate).
In addition, we searched clinical trial registries (http://www.clinicaltrials.gov) to find
studies in the grey literature. The database was accessed on 2 July 2021. No language
restriction was applied in the search process. The reference lists of related systematic
reviews were also reviewed to identify possible additional studies. The search was limited
to human studies. Two reviewers (MA and MHA) independently screened the title and
abstract of each publication to exclude any that did not address the research question of
interest. The same reviewers evaluated the remaining articles’ full texts to identify studies
that met all criteria for inclusion in the quantitative meta-analysis. Figure 1 details the
study selection flowchart.
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2.6. Data Collection and Management

MA and MHA independently screened the titles and abstracts of the articles identified
in the search. In case of disagreement, a consensus was reached by discussion. Next, the full
text of all qualified studies or for which there was insufficient information in the title and
abstract to make a decision were obtained. Subsequently, the same two reviewers (MA and
MHA) independently checked the full text publications for inclusion. Any discrepancies
were resolved by an open discussion between reviewers. Studies that did not meet the
inclusion/exclusion criteria were excluded, and the reason for exclusion is indicated in
Table S1.

2.7. Data Extraction

MA independently abstracted all relevant data from the included articles onto a specific
spreadsheet. The following characteristics were recorded: (a) study characteristics—primary au-
thor, time period of study/year of publication; (b) RCT design characteristics—split-mouth,
parallel; (c) patient characteristics—age, sex, and number of tooth extractions or localiza-
tion; (d) follow-up period; (e) outcome assessment—histology evaluation technique, bone
density measurement methodology; (f) intervention groups—control and experimental
groups. MA entered data into Review Manager 5.4 and double checking was performed
for accuracy.

2.8. Risk of Bias in Individual Research Studies

We assessed risk of bias of included studies following the recommendations of
Cochrane Handbook for Systematic Reviews of Interventions [36]. Using these standard-
ized criteria, two authors (MA and MHA) judged the risk of bias across each study in the
six following domains: random sequence generation, allocation concealment, blinding of
participants and personnel, blinding of outcome assessment, incomplete outcome data,
and selective reporting. Any discrepancies in judgements of risk of bias were resolved by
open discussion. Once these domains were assessed, an overall rating was assigned to each
study. The overall score was low risk when none of the six domains were found to be at
high risk and if three or less domains were found to be at unclear risk. A moderate risk
was assigned when one domain was found to be at high risk; or no domains were found
to be a high risk but four or more were found to be at unclear risk. In all other cases, the
publication was classified as overall high risk of bias.

2.9. Outcomes

The primary outcome was new bone formation in the extraction socket, measured
as the mean value using histomorphometry analysis. New bone formation was defined
according to the study authors; if this was not clearly defined, it was classified based on
the presence of mineralized tissue area. Our secondary efficacy outcome was alveolar
bone density after the observation period. It was defined as the radiodensity obtained
after evaluating alveolar bone in periapical radiographs, cone beam computed tomography
(CBCT), or micro-CT. If the data were missing or unclear, attempts were made to contact
the corresponding author for additional information or clarification.

2.10. Statistical Analysis

The data for the quantitative assessment were extracted for the primary and secondary
outcomes and subjected to meta-analysis. The software Review Manager 5.4 (The Nordic
Cochrane Centre, Copenhagen, Denmark) was used to perform the meta-analysis using
the inverse variance method. For continuous data outcomes, such as new bone formation
or bone density, the standard mean difference (SMD) and 95% confidence intervals (CI)
were calculated. SMD was selected as the metric of choice because the measurement units
were not the same. The effect was considered significant when p ≤ 0.05. Heterogeneity was
assessed using the I2 statistic, with values over 50% indicating substantial heterogeneity [37].
The fixed-effects model was used when no significant heterogeneity was found (I2 ≤ 50%),
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whereas the random-effects model was adopted when a significant heterogeneity (I2 > 50%)
was detected. The results were shown in a forest plot to provide a graphical overview of
the data. If possible, a sub-group analysis was performed according to the type of PRP
used (L-PRP or PRGF). Meta-analyses were performed only for studies with comparable
outcome measures and observation times. Due to the low number of studies, sensitivity
analyses and reporting bias assessment using funnel plots could not be performed.

2.11. Certainty of Evidence

Two authors (MA and MHA) independently evaluated the overall certainty of evi-
dence. The Grading Recommendation, Assessment, Development, and Evaluation (GRADE)
approach [36] was followed to assess the certainty of evidence of primary and secondary
outcomes of the studies included in the meta-analyses. We judged the certainty of evidence
as high, moderate, low, or very low. GRADEpro Guideline Development Tool (McMaster
University, University, 2020, developed by Evidence Prime, Inc., available from grade-
pro.org) was used to assess the quality of the body of evidence [38]. The decisions to down-
or upgrade the level of certainty were justified.

3. Results
3.1. Study Selection and Characteristics

From a total of 2639 unique publications identified in the electronic databases using
our search strategy, we retrieved 12 publications, and finally included six studies (Figure 1).
Supplementary Table S1 lists the excluded studies and the reasons for exclusions. We
excluded studies because an unassisted socket healing arm was not included, the design of
trial was not an RCT, or different outcomes were reported. The six selected clinical trials
were dated from 2010 to 2020 and included 188 participants (range 18–74 years). All trials
were randomized, blinded for the participant and controlled for unassisted socket healing.
The follow-up period to assess new bone formation and bone density was 8–10 weeks and
10–12 weeks, respectively.

The main characteristics of the selected RCTs are summarized In Table 1. Two trials
used a split-mouth design, whereas a parallel design was employed in four studies. Overall,
229 teeth were extracted in 188 subjects. L-PRP and P-PRP were applied in 27 and 76 sockets,
respectively. The primary outcomes of new bone formation and bone density are indicated
in Tables 2 and 3, respectively. Three studies presented new bone formation data, whereas
four studies reported alveolar bone density information.

Table 1. Main characteristics of the included studies.

Study Design
Patients
(Teeth)

Sex
Male/Female

Age
Years

Site
Characteristics Follow-Up PRP Preparation

Protocol
Intervention

Control Test

Stumbras et al.,
2020 [39] RCT 1 40 14/26 Anterior

maxilla 12 weeks 580 g; 8 min Natural
healing PRGF

Alissa et al.,
2010 [29] RCT 23 (29) 8/7 20–52 Mandible or

maxilla 12 weeks 3200 rpm; 12 min Non-
PRP

L-
PRP

Arya et al.,
2019 [27]

Split mouth
RCT 20 (40) 13/7 15–30 Mandible 13 weeks 580 g; 8 min Empty

socket PRGF

Célio-Mariano
et al., 2012 [40]

Split mouth
RCT 15 (30) 7/8 18–22 3ºmolars 6 months 160 g; 20 min

400 g; 15 min
Blood
clot

L-
PRP

Anitua et al.,
2015 [18] RCT 60 29/31 18–74

Molar
extraction in
the mandible

12 weeks 580 g; 8 min Blood
clot PRGF

El-Hamid et al.,
2018 [41] RCT 30 6/24 C:30.1 ± 7.5

T: 29.2 ± 4.4 Premolars 2 months 580 g; 8 min Natural
healing PRGF

1 Additional experimental groups are present, NR: not reported; PRP: platelet-rich plasma; PRGF: platelet-rich in
growth factors.
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Table 2. Histomorphometric analysis of the included studies.

Study
Time of Measurement Sample Size Staining Histomorphometric Analysis

C/T Control Test

Stumbras et al.,
2020 [39] 12 weeks 10/10 May Grünwald-Giemsa New formed mineral tissue (%)

46.5 ± 15.2
New formed mineral tissue (%)

75.5 ± 16.3

Anitua et al.,
2015 [18] 10–12 weeks 5/21 HE and MGG New bone regeneration (%)

35.6 ± 35.3
New bone regeneration (%)

63.1 ± 13.8

El-Hamid et al.,
2018 [41] 8 weeks 10/10 Masson’s Trichrome Mineralized tissues (%)

17.2 ± 5.2
Mineralized tissues (%)

25.4 ± 7.6

HE: hematoxylin–eosin; MGG: May–Grünwald–Giemsa.

Table 3. Bone density measurements of the included studies.

Study
Time of Measurement Sample Size Method Bone Density

C/T Control Test

Alissa et al.,
2010 [29] 12 weeks 8/8 Periapical radiographs Trabecular bone volume (%)

31.5 ± 6.9
Trabecular bone volume (%)

42.7 ± 13.5

Arya et al.,
2019 [27] 13 weeks 20/20 CBCT Mean bone density (HU)

500.05 ± 117.40
Mean bone density (HU)

647.95 ± 102.24

Célio-Mariano
et al., 2012 [40] 3 months 15/15 Periapical radiographs Mean bone density (%)

73.51
Mean bone density (%)

83.24

Anitua et al.,
2015 [18] 10–12 weeks 22/30 CBCT Mean bone density (HU)

318.2 ± 113.0
Mean bone density (HU)

450.0 ± 106.7

HU: Houndsfield units; CBCT: Cone Beam Computed Tomography.

3.2. Risk of Bias of Included Trials

The risk of bias assessment is summarized in Figure 2. Three trials clearly described
the allocation concealment procedure and were judged as low risk of bias. The rest did not
mention the allocation in the text and were classified as unclear risk of bias. Due to the
characteristics of the outcomes, blinding of participants and personnel domain was scored
as low risk of bias. Four studies were blinded for outcome assessment and judged as low
risk of bias. Blinding to outcome assessment was unclear in two publications, as a clear
description was not provided. The follow-up reports were completed for five trials, with
one trial classified as unclear risk of bias. Overall, four studies were classified as low risk,
and two trials were scored as having moderate risk.
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Figure 2. Study selection flow diagram. PRISMA flow diagram of the screening and selection process.
Quality assessment of the included RCTs. (a) Risk of bias summary: review authors’ judgments about
each risk of bias item for each included study: (+), low risk of bias; (?): unclear risk of bias. (b) Risk of
bias graph: review authors’ judgments about each risk of bias item presented as percentages across
all included studies.
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3.3. Primary Outcome: New Bone Formation

Three studies evaluated the performance of PRGF in new bone formation using histo-
morphometric analysis, whereas we could not find any study employing L-PRP (Table 2).
Bone biopsy specimens (25 controls and 41 PRGF) were harvested at 8–10 post-operative
weeks and stained with hematoxylin and eosin and May–Grünwald–Giemnsa [18,39], or
Masson’s Trichrome [40]. Meta-analysis revealed that new bone formation was statisti-
cally higher for sockets treated with PRGF (SMD, 1.44; 95% CI, 0.84 to 2.03) (Figure 3). In
addition, the consistency among studies was high (heterogeneity index I2 = 0%, p = 0.93).
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standardized mean difference; CI: confidence interval.

3.4. Secondary Outcome: Bone Density

In total, 4 out of 6 studies evaluated alveolar bone density after a follow-up period
of 10–12 weeks (Table 3). PRGF and L-PRP were present in two trials each. In two
studies, radiographic density was measured using CBCT [18,27]. Two other trials measured
trabecular bone volume (%) [29] and relative bone density (%) [41] with radiographic
assessment. Regardless of the type of PRP, the meta-analysis reported a higher bone density
in treated sockets in comparison to control sockets (SMD, 1.11; 95% CI, 0.76 to 1.45; I2 = 0%)
(Figure 4a). When a subgroup analysis was performed, PRGF significantly increased bone
density over unassisted healing sockets (SMD, 1.24; 95% CI, 0.81 to 1.68; I2 = 0%) (Figure 4b).
L-PRP also showed a positive effect on the alveolar bone density (SMD, 0.88; 95% CI, 0.31
to 1.45; I2 = 0%) (Figure 4c).
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3.5. Quality of Evidence

Overall evidence was qualified using GRADE for all evaluated outcomes. Regarding
to the studies with PRGF, the quality of evidence for new bone formation and bone density
was judged as moderate. With regard to L-PRP studies, bone density was scored as low.
The reasons for a downgrade/upgrade of the quality of evidence are indicated in Tables 4 and 5.
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Table 4. Summary of the quality assessment using the GRADE approach of outcomes included in the meta-analysis of PRGF.

Certainty Assessment № of Patients Effect
Certainty Importance

No of Studies Study Design Risk of Bias Inconsistency Indirectness Imprecision Other Considerations [Intervention] [Comparison] Relative
(95% CI)

Absolute
(95% CI)

New bone formation (assessed with: histomorphometry)

3 Randomized
trials Not serious Not serious Not serious Serious a

Publication bias
strongly suspected b

Strong association c
41 25 -

SMD 1.44 SD
higher

(0.27 higher to
2.6 higher)

⊕⊕⊕#
Moderate CRITICAL

Bone density (assessed with: CBCT)

2 Randomized
trials Not serious Not serious Not serious Serious a

Publication bias
strongly suspected b

Strong association c
50 42 -

SMD 1.24 SD
higher

(0.39 higher to
2.09 higher)

⊕⊕⊕#
Moderate CRITICAL

CI: confidence interval; RCT: randomized trials; SMD: standardized mean difference. a. imprecision judged as serious due to the low number of included studies. b. the possibility of
publication bias cannot be excluded, thus, we downgraded by one level the quality of evidence. c. the effect was considered large if at least 2 studies showed an SMD > 0.8.

Table 5. Summary of the quality assessment using the GRADE approach of outcomes included in the meta-analysis of L-PRP.

Certainty Assessment № of Patients Effect
Certainty Importance

No of Studies Study Design Risk of Bias Inconsistency Indirectness Imprecision Other Considerations [Intervention] [Comparison] Relative
(95% CI)

Absolute
(95% CI)

Bone density (assessed with: periapical radiography)

2 RCT Not serious Not serious Not serious Serious a Publication bias
strongly suspected b 23 23 -

SMD 0.88 SD
higher

(0.24 lower to 2
higher)

⊕⊕##
Low CRITICAL

CI: confidence interval; RCT: randomized trials; SMD: standardized mean difference. a. imprecision judge as serious due to the low number of included studies. b. the possibility of
publication bias cannot be excluded, thus, we downgraded by one level the quality of evidence.
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4. Discussion

PRP preparations have been widely used in the oral and maxillofacial field in recent
decades to promote tissue regeneration and prevent post-operative discomfort [42,43].
However, the high heterogeneity among PRP preparation protocols has resulted in platelet
concentrate products that differ significantly in composition and functions [44]. Although
the main PRP groups (L-PRP and PRGF) have been proven to be effective in socket preser-
vation [18,27,29,30], evidence from clinical trials suggests more consistent and reproducible
data when there is a lack of leukocytes in the preparation [22].

PRP has been associated with better healing in several studies, including a beneficial
effect on soft-tissue healing and regeneration [45], new capillary growth promotion [46],
or acceleration of epithelization in the chronic wound [47]. As these beneficial effects
of platelet concentrate products are caused by the release of growth factors during the
first days, it is still debatable whether PRP may stimulate bone healing. The aim of this
systematic review was to investigate the effects of platelet-rich plasma in bone regeneration
in alveolar ridge preservation.

A total of six articles were selected and analyzed in this systematic review. Our study
employed new bone formation as the primary outcome to evaluate the bone-regeneration
ability of the PRP. New bone formation information was presented in three studies. Bone
density was the secondary outcome and data were found in four studies. Given the small
number of the eligible studies, the results should be interpreted with caution. Nonetheless,
we observed a very low heterogeneity among the included studies, indicating a high-
standard design and a low source of bias. In line with this, most of the studies of our
systematic review were judged as having medium-to-high quality based on the criteria set
for the risk of bias assessment.

PRGF is considered a type of platelet-rich plasma characterized by a complete lack
of leukocytes [20]. Unlike other PRP, this product is prepared following a reference pro-
tocol that did not undergo major modifications since its introduction [34], facilitating the
interpretation and reproducibility of the clinical data. The results from our meta-analysis
seemed to show significantly greater new bone formation in the PRGF group compared
with unassisted healing. Unfortunately, no data were found for the L-PRP treatment, and a
quantitative analysis could not be performed for this group. Our analysis was in accordance
with another systematic review that assessed the efficacy of different graft materials in
alveolar socket preservation [32]. Anitua and colleagues have reported the ability of PRGF
to regenerate hard tissue in post-extraction sockets by histomorphometric analysis [18].
However, in the same systematic review the authors expressed their concerns due to the
limited number of biopsies analyzed in the unassisted healing group (n = 5) [32]. Recently,
two independent RCTs have reproduced these observations by employing the same prepa-
ration protocol and using a comparable follow-up time and methodology, providing strong
evidence on using PRGF for alveolar bone regeneration in clinical practice [39,40].

Furthermore, our quantitative meta-analysis revealed a significantly higher bone
density in PRP sockets than in unassisted socket healing. Different studies have employed
different techniques to quantify bone density (periapical radiographs or cone-beam CT
scan (CBCT)). CBCT might be a more sensitive technique than periapical radiographs in
the measurement of changes in the radiographic bone density. A recent in vitro study
suggested that traditional periapical images might not be sensitive enough to detect density
variation in the range of bone mineral density [48]. Therefore, future well-designed trials
should include high-sensitive techniques such as CBCT in order to analyze alveolar density
changes properly.

A systematic review dated 2017 investigated socket preservation of different platelet
concentrates in terms of healing, probing depth, and bone density [34]. According to their
results, PRGF and L-PRP showed a better performance regarding the outcome of bone
density. However, it must be noticed that their analysis included prospective studies along
with RCTs, introducing an important source of bias with the selection of non-randomized
studies. Moreover, their results are based on two studies (one PRGF and one L-PRP study);
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therefore, their conclusions should be interpreted cautiously. In comparison to the previous
review, our review included three new studies that have been recently published. We
believe that our study can provide new insights into hard tissue healing after tooth removal.

Healing is affected by many factors that can make the interpretation complex. Indi-
cation for tooth extraction is a possible confounding factor which may have a relevant
influence on socket healing. Five trials included the reasons for tooth extraction in the
publication, and only one excluded patients with significant periapical or periodontal
disease. Future studies should be more rigorously designated to avoid a misinterpretation
of the results.

Another characteristic that can severely affect the ability of PRP to preserve alveolar
tissue is the participants’ smoking habits. Smoking is believed to be associated with
delayed wound healing, and a significant reduction in alveolar width and bone density
in the alveolar sockets of patients that smoke [49,50]. Unreliable results regarding hard-
tissue healing have been obtained when an unusual percentage of subjects was present
in one of the experimental groups [28]. Two of our selected studies excluded cigarette-
smoking subjects from the trials, two studies presented smoking participants homogenously
distributed across the groups, and two trials did not include information regarding the
smoking habit. Appropriate inclusion/exclusion criteria in the trial design stage is of
critical importance to evaluate alveolar bone regeneration ability, and future studies should
take this into account.

Several limitations affect the present work. No distinction was made between mandibu-
lar or maxillary tooth extraction sites [29,40,41]. Furthermore, several studies only con-
sidered a specific tooth type such as third molar [41], molar [18], or premolar sites [40].
The selection of participants from different populations might be an important source of
bias. For that, a complete description of demographic and clinical information should be
provided to avoid confounding factors. In addition, the low number of studies evaluating
the different PRP products would indicate the need for more new studies. However, this
limitation was reduced with the exclusive inclusion of randomized clinical trial and the
selection of trials with similar follow-up times or methodology.

5. Conclusions

Despite the limitations of the included studies, our data suggest that PRGF, in compar-
ison to unassisted healing, can improve alveolar bone regenerative potential (new bone
formation and bone density). Unfortunately, the effect of L-PRP could not be assessed for
the primary outcome (new bone formation) However, more high-quality clinical studies
are needed.
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